超弹性形状记忆合金(SMA)的力学性能在循环加卸载过程中逐渐变化并终趋于稳定。在超弹性SMA丝循环加卸载力学试验基础上,提出了径向基函数神经网络本构模型。该模型的输入为循环次数、加卸载信息和应变值,输出为应力值。计算表明,该模型可以准确模拟SMA的循环滞回特性,具有很好的预测精度。
超弹性形状记忆合金(SMA)的力学性能在循环加卸载过程中逐渐变化并终趋于稳定。在超弹性SMA丝循环加卸载力学试验基础上,提出了径向基函数神经网络本构模型。该模型的输入为循环次数、加卸载信息和应变值,输出为应力值。计算表明,该模型可以准确模拟SMA的循环滞回特性,具有很好的预测精度。