本文研究了Hilbert空间上有界线性算子的谱的某些子集的连续性,利用算子谱的精密结构的分析方法,给出了Hilbert空间H上有界线性算子T的谱σ(T)的某些子集如Φn(T),Φ(T),Φ+(T),Φ-(T),σ0p(T)等连续的充要条件.特别在Hardy空间H2(Γ)上,研究了Toeplitz算子Tφ的谱σ(Tφ)的某些子集的连续性.
Applying the elaborate structure of the spectrum of operators,giving the sufficient and necessary conditions under which some subsets such as Φn(T),Φ(T),Φ+(T),Φ-(T),σ0p(T) of the spectrum σ(T) of bounded linear operators T on a Hilbert space H are continuous.In particular,exploring the continuity of some subsets of the spectrum σ(Tφ) of Toeplitz operator Tφ on Hardy space H2(Γ).