位置:成果数据库 > 期刊 > 期刊详情页
成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究
  • 期刊名称:地球化学
  • 时间:0
  • 页码:498-506
  • 分类:P581[天文地球—岩石学;天文地球—地质学]
  • 作者机构:[1]成都理工大学油气藏地质及开发工程国家重点实验室,沉积地质研究院,四川成都610059
  • 相关基金:国家自然科学基金(40839908)
  • 相关项目:四川盆地东北部三叠系飞仙关组优质白云岩储层形成的成岩机制
中文摘要:

根据我国鄂尔多斯盆地上古生界和四川盆地三叠系须家河组砂岩成岩作用和次生孔隙形成机制的研究,总结了碎屑岩成岩过程中长石、高岭石、伊利石之间的物质交换及其对次生孔隙形成的影响。研究表明:(1)砂岩埋藏前组成中长石的类型及相对含量、含膨胀层的粘土矿物(如同期火山物质)的数量、系统的开放性与封闭性以及流体中额外钾离子的存在与否直接控制了长石的溶解方式和次生孔隙的形成机制;(2)在热力学上最不稳定且低温条件下更易溶解的偏基性斜长石在同生到埋藏成岩作用初期已大量溶解,并伴随高岭石的沉淀,在热力学上相对稳定的钾长石是保存时间最长的长石类型,也是以后埋藏成岩过程中对次生孔隙贡献最多的长石类型;(3)在埋藏成岩作用初期到120—140℃古地温以前的成岩阶段中,蒙皂石.伊利石的转化反应是克服埋藏成岩过程中钾长石溶解动力学屏障的重要机制,如果骨架颗粒中存在较多的钾长石和较多的含膨胀层的粘土矿物,则次生孔隙主要由钾长石溶解提供,并有斜长石的钠长石化或自生钠长石沉淀,这是鄂尔多斯盆地上古生界石盒子组和三叠系延长组次生孔隙的主要形成机制;(4)在120~140℃古地温以后的深埋藏成岩阶段中,高岭石的伊利石化是克服埋藏成岩过程中钾长石溶解动力学屏障的另一重要机制,而钾长石的溶解又是封闭条件下高岭石的伊利石化的必要伴随反应,地层中钾长石和高岭石的相对数量控制了长石的溶解以及溶解产物中钾长石、高岭石、伊利石三种矿物间的数量关系,只要地层中钾长石(或高岭石)没有消耗完,钾长石的溶解和高岭石伊利石化反应就会持续发生并在深埋藏条件下形成次生孔隙,这是鄂尔多斯盆地东部太原组和四川盆地三叠系须家河组二段砂岩?

英文摘要:

This paper summarizes material formation of secondary porosity in clastic exchanges among feldspar, kaolinite and llhte and their mtluences on me diagenesis, based on the study of the sandstone diagenesis and the formation mechanism of secondary porosity in the Upper Paleozoic, Ordos Basin and in Xujiahe Formation of the Triassic, Sichuan Basin and considering previous results. The results show: ( 1 ) The way of feldspar dissolution and the formation mechanism of secondary porosity are dominated by types of feldspar and their relative content in sandstones before buried, the quantity of clay material containing expanded layer (eg. coeval voleancal material), wheather the system was open or closed, and wheather there was extra K ion in fluids; (2) Plagioclase, which is the most thermodynamically instable and thus easier to be dissolved at lower temperature, is largely dissolved from syngenetic period to the early stage of diagenesis, accompanied with kaolinite precipitation, while thermodynami- cally more stable K-feldspar (especially in marine sandstone influened by marine fluids) lasts longer and contributes more to secondary porosity in buried diagenesis than plagioclase. (3) Illitization of smectite is a significant mech- anism to overcome the dynamical barrier of K-feldspar dissolution since early buried diagenesis and before the paleotemperature reached at 120 - 140 ℃ : if there are much framework K-feldspar and clay with expanded layer, the secondary porosity would be mainly provided by K-feldspar dissolution, with albitization of plagioclase or authigenic albite precipitation. This is the essential mechanism forming secondary porosity in Taiyuan Formation of the Upper Paleozoic, eastern Ordos Basin and in the Xujiahe Formation of the Triassic, Sichuan Basin; (4) In deeply buried diagenesis with temperatures higher than 120 - 140 ℃, illitization of kaolinite is another significant mechanism to overcome the dynamical barrier of K-feldspar dissolution, and also K-feldspar disso

同期刊论文项目
同项目期刊论文