提出了基于SVM的遥感图像分类方法并构建了分类模型,该方法以唐山1:50000TM局部图为分类数据来源,由用户选择感兴趣的区域,分别提取该区域绿地、公共用地和房屋的图像特征,并以此为训练样本进行训练,采取交叉校验的方法获得SVM的最优惩罚因子C和间隔γ参数进行图像分类。实验结果表明,此分类方法准确率高、稳定快捷,是SVM在遥感图像分类中的一个很好的应用。
A classification method and model is proposed based on SVM for remote sense image.By selecting Regions Of Interest (ROI) from the 1:50 000TM image of Tangshan city area,extract the feature of greenbelt,public lands,building and so on,the parameters of C and T are achieved by cross validation method,with these textures to train and parameters to classify the RS image,the fact shows that the classification method based on SVM has a high accuracy and a fast,stably efficiency.