位置:成果数据库 > 期刊 > 期刊详情页
Encoding Spatial Context for Large-Scale Partial-Duplicate Web Image Retrieval
  • ISSN号:1000-9000
  • 期刊名称:《计算机科学技术学报:英文版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TU984.12[建筑科学—城市规划与设计]
  • 作者机构:[1]Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China, Hefei 230027, China, [2]Department of Electronic Engineering and Information Science, University of Science and Technology of China Hefei 230027, China, [3]Department of Computer Science, Texas State University, San Marcos, TX 78666, U.S.A., [4]Department of Computer Science, University of Texas at San Antonio,San Antonio, TX 78249, U.S.A.
  • 相关基金:supported in part to Dr.Wen-Gang Zhou by the Fundamental Research Funds for the Central Universities of China under Grant Nos.WK2100060014 and WK2100060011; the Start-Up Funding from the University of Science and Technology of China under Grant No.KY2100000036; the Open Project of Beijing Multimedia and Intelligent Software Key Laboratory in Beijing University of Technology,and the sponsor from Intel ICRI MNC project; in part to Dr.Hou-Qiang Li by the National Natural Science Foundation of China(NSFC)under Grant Nos.61325009,61390514,and 61272316; in part to Dr.Yijuan Lu by the Army Research Office(ARO)of USA under Grant No.W911NF-12-1-0057; the National Science Foundation of USA under Grant No.CRI 1305302; in part to Dr.Qi Tian by ARO under Grant No.W911NF-12-1-0057; the Faculty Research Award by NEC Laboratories of America,respectively; was supported in part by NSFC under Grant No.61128007
中文摘要:

许多最近的最先进的图象检索途径基于 Bag-of-Visual-Words 由使量子化用一套视觉词为一幅图象建模并且代表本地筛(规模不变的特征变换) 特征。本地特征并且不得已地的歧视的力量引起在图象之间的许多假本地火柴的特征量子化还原剂,它降级检索精确性。过滤那些假火柴,在视觉词之中的几何上下文流行地为几何一致性的确认被探索了。然而,存在与全球或本地的几何确认学习计算地是昂贵的或完成有限精确性。为了处理这个问题,在这份报纸,我们集中于部分副本网图象检索,并且建议一个计划为视觉匹配的确认编码空间上下文。一个有效仿射的改进计划被建议精制确认结果。部分副本的网图象的实验寻找,用 100 万幅图象的一个数据库,表明建议途径的有效性和效率。一个 10-million 图象数据库上的评估进一步揭示我们的途径的可伸缩性。

英文摘要:

Many recent state-of-the-art image retrieval approaches are based on Bag-of-Visual-Words model and represent an image with a set of visual words by quantizing local SIFT(scale invariant feature transform) features. Feature quantization reduces the discriminative power of local features and unavoidably causes many false local matches between images, which degrades the retrieval accuracy. To filter those false matches, geometric context among visual words has been popularly explored for the verification of geometric consistency. However, existing studies with global or local geometric verification are either computationally expensive or achieve limited accuracy. To address this issue, in this paper, we focus on partialduplicate Web image retrieval, and propose a scheme to encode the spatial context for visual matching verification. An efficient affine enhancement scheme is proposed to refine the verification results. Experiments on partial-duplicate Web image search, using a database of one million images, demonstrate the effectiveness and efficiency of the proposed approach.Evaluation on a 10-million image database further reveals the scalability of our approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机科学技术学报:英文版》
  • 中国科技核心期刊
  • 主管单位:
  • 主办单位:中国科学院计算机技术研究所
  • 主编:
  • 地址:北京2704信箱
  • 邮编:100080
  • 邮箱:jcst@ict.ac.cn
  • 电话:010-62610746 64017032
  • 国际标准刊号:ISSN:1000-9000
  • 国内统一刊号:ISSN:11-2296/TP
  • 邮发代号:2-578
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:505