群环理论将群论和环论有机地结合了起来,是代数学中的重要分支之一,其中增广理想和增广商群是群环理论中的一个经典课题.设G有限群,分别记的Burnside环及其增广理想为Ω(G)和Δ(G).本文对任意正整数n,具体构造了Δ^n (Ip)作为自由交换群的一组基,并确定了商群Δ^n (Ip)/Δ^n+1 (Ip)的结构,其中Ip=〈a,b|a^p^2=b^p=1,b^-1 ab=a^p+1〉,p为奇素数.
Group ring theory is an important branch of algebra, which is an important branch of algebra. It is a classical problem in the theory of group rings. Let G be a finite group of the order p^3 , denote the Burnside ring of G and its augmentation ideal by Ω(G) and △(G) , respectively. This paper constructs an explicit Z-basis of △^n(Ip) and determines the isomorphism class of the n-th quotient group Δ^n (Ip)/Δ^n+1 (Ip) for each positive integer n, where Ip=〈a,b|a^p^2=b^p=1,b^-1 ab=a^p+1〉 ,pisanodd prime.