对复合材料旋转壳的失稳问题进行了有限元推导,建立了考虑横向剪切变形的旋转壳稳定性分析模型。在应变向量阵中引入了横向剪切应变,从而考虑了剪切的影响。为了避免剪切自锁,刚度的计算采用一点高斯积分法,几何刚度的推导采用Stricklin法。最终将稳定性问题归结为特征值问题。数值算例表明,对于各向同性和复合材料旋转壳,横向剪切变形均使其临界载荷降低。在稳定性分析中,横向剪切变形对各向同性材料旋转壳的影响较小,对复合材料的影响较大。
A finite element model is developed to analyze the stability of composite shells of revolution with the transverse shear effect, Transverse shear strain is introduced into the strain vector to take transverse shear deformation into account, To avoid shear lock, the one point Gauss integral method is used to compute the stiffness. The geometry stiffness is deduced by Stricklin method. The stability problem is generalized to an eigenvalue problem at last. The examples show that the critical load of isotropic or composite shells of revolution will decrease when considering the transverse shear deformation. The influence of transverse shear is small on isotropic thin shells, but a little big on composite shells. The influence of transverse shear on isotropic thin shells is smaller than on composite shells.