我们学习与一座普通结构化的水库交往的二个纠缠的原子的动力学。借助于原子动力学的准确溶液,我们显示出原子的起始的纠缠的状态的相对阶段控制的新奇的量干扰。量干扰在套住的激动状态的人口和原子的静止纠纷上有大影响。特别地,我们构造原子静止纠纷能在他们的起始的价值上在下面成长的一个明确的条件。
We study the dynamics of two entangled atoms interacting with a common structured reservoir. By means of the exact solution of atomic dynamics, we show a novel quantum interference controlled by the relative phase of initial entangled state of the atoms. The quantum interference has a great influence on trapped excited-state population and stationary entanglement of the atoms. In particular, we construct an explicit condition under which atomic stationary entanglement can grow over their initial value.