位置:成果数据库 > 期刊 > 期刊详情页
广义系统解耦融合Wiener状态估值器
  • ISSN号:1671-1815
  • 期刊名称:《科学技术与工程》
  • 时间:0
  • 分类:O211.64[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]黑龙江大学自动化系,哈尔滨150080
  • 相关基金:国家自然科学基金(60374026)资助
中文摘要:

应用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型和白噪声估计理论,在线性最小方差分量标量加权最优信息融合准则下,提出了多传感器广义线性离散随机系统分量解耦融合Wiener状态估值器,可统一处理融合滤波、预报和平滑问题,可处理非因果广义系统。为了计算最优加权,给出了计算局部估计误差互协方差阵公式。它的精度比每个局部估值器精度高。一个MonteCarlo仿真例子说明其有效性。

英文摘要:

By the modem time series analysis method, based on the autoregressive moving average (ARMA) innovation model and white noise estimation theory, using the optimal fusion rule weighted by scalars for components, a component decoupled fusion Wiener state estimator is presented for the linear discrete stochastic descriptor systems with multisensor. The fused filtering, smoothing, and prediction problems can be handled in a unified framework and can handle non-cause decriptor system. In order to compute the optimal weights, the formula of computing the cross-covariances among local estimation errors is presented. Its accuracy is higher than that of each local estimator. A Monte Carlo simulation example shows its effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科学技术与工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国技术经济学会
  • 主编:明廷华
  • 地址:北京市学院南路86号
  • 邮编:100081
  • 邮箱:ste@periodicals.net.cn
  • 电话:010-62118920
  • 国际标准刊号:ISSN:1671-1815
  • 国内统一刊号:ISSN:11-4688/T
  • 邮发代号:2-734
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:29478