设k是一个代数闭域,∧=k[x,y]/(x^2,xy,y^3)是一个Gelfand-Ponornarev代数,Ц=(∧~×∧~,rad∧~,0)为其双模问题.本文确定了Mat(Ц)中维数向量为(n,n)的不可分解典范型的结构,并给出了计数公式;定义了Ц上的R-band,证明了Ц上的所有R-band与A的band等价类一一对应,Ц上的不可分解典范型与∧上band-模的同构类一一对应.
Let ∧ be the Gelfand-Ponomarev algebra G2,3 =k[x,y]/(xy,x^2,y^3)over an algebraically closed field k; let Ц= (∧~×∧~,rad∧~,0) be the bimodule problem of ∧. The present paper determines the structure of the canonical forms of dimension vector (n,n) of A and calculate their numbers; defines a concept of R-band of ∧ and shows that R-bands of ∧ are exactly representatives of equivalent-classes of ∧ bands. Therefore, there is a one-to-one correspondence of parameterized indecomposable canonical forms of Ц and the iso-classes of the band modules of ∧.