磁化涡旋是微米/亚微米铁磁材料中一种常见的磁畴结构,由于它可以被用于高密度的磁性存储设备中,近年来受到了人们的广泛关注。本文基于随时间变化的Ginzburg-Landau方程,采用实空间下的相场模型研究了铁磁材料中磁化涡旋的力磁耦合行为,探讨了铁磁纳米圆柱体中自发磁化涡旋形态以及该结构在沿圆柱体轴向应变作用下的响应行为。结果表明,沿圆柱体轴向的应变对面内磁化分量的幅值和分布影响十分微弱,但对垂直于圆柱体表面磁化分量的影响却十分明显,具体表现为平面外磁化分量的幅值将随着拉应变的增大而增大,又会伴随压应变的增大而减小。随着平面外磁化分量的增加,则更容易探测到该磁化涡旋的极性情况,从而有利于实验观察和实际应用。
Magnetic vortex in micron/submicron sized ferromagnetic materials has attracted numerous interest recently due to its potential application in high density magnetic storage media.Based on the time-dependent Ginzburg-Landau (TDGL)equation,a phase-field model reflecting the magneto-mechanical behavior of the ferromagnetic materials was applied to simulate the response of magnetic vortex in ferromagnetic nanodot under the out-of-plane uniaxial strain.The results reveal that the strain along the ax-is of the nanodot has little effect on the magnitude and distribution of the in-plane magnetization while it has a great impact on the out-of-plane magnetization.To be specific,the magnitude of the out-of-plane magnetization increases with the increment of tensile strain while decreases with the increase of compressive strain.The polarity of the magnetic vortex becomes easier to be detected with the increment of the magnitude of the out-of-plane magnetization,which is beneficial for experimental observation and practi-cal application.