To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, were selected as the design parameters. Numerical model of the film cooling system was established, validated, and used to generate 32 groups of training samples. Least square support vector machine (LS-SVM) was applied for surrogate model, and the optimal design parameters were determined by a kind of chaotic optimization algorithm. As hole length, lateral expansion angle and forward expansion angle are 90 mm, 20° and 5°, the area-averaged film cooling effectiveness can reach its maximum value in the design space. LS-SVM coupled with chaotic optimization algorithm is a promising scheme for the optimization of shaped film cooling holes.