欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Classification ofhypersurfaces with constant Moebius Ricci Curvature in Rn+1
期刊名称:Tohoku Math. J.
时间:2015
页码:383-403
相关项目:球几何与不定Kaehler度量流形Q^n_1中子流形的研究
作者:
Z.Guo, T.Li, C.P.Wang|
同期刊论文项目
球几何与不定Kaehler度量流形Q^n_1中子流形的研究
期刊论文 16
同项目期刊论文
Complete stationarysurfaces in R^4_1 with total Gaussian curvature -\int K dM=6\pi
Moebius geometry ofthree-dimensional Wintgen ideal submanifolds in S5
Complete stationarysurfaces in R^4_1 with total Gaussian curvature -\int K dM=4\pi
Mobius homogeneous hypersurfaces with two distinct principal curvatures in S (n+1)
Chen-Gackstatter typesurfaces in R^4_1: deformation, symmetry, and the problem of embeddedness
Willmore surfaces in3-sphere foliated by circles
Classification ofM?bius homogenous surfaces in S^4
Wintgen idealsubmanifolds with a low-dimensional integrable distribution (I)
Classification ofMoebius homogeneous hypersurfaces in a 5-dimensional sphere
Willmorehypersurfaces with constant Moebius curvature in Rn+1,
Deformation ofhypersurfaces preserving the Moebius metric and a reduction theorem
Compact Willmorehypersurfaces with two distinct principal curvatures in S^{n+1}
A Note on BlaschkeIsoparametric hypersurfaces
Global geometry andtopology of spacelike stationary surfaces in the 4-dimensional Lorentz space
Wintgen ideal submanifolds with a low-dimensional integrable distribution