考虑一类Schrdinger方程组.运用Nehari流形技巧和欧拉泛函对O(N)中的某些子群的不变性证明了非径向对称变号解的存在性和多重性.
Considers a class of Schrdinger systems.By the Nehari manifold technique and the invariance of the Euler function under the action of some subgroup ofO(N),the author proves the existence and multiplicity of non-radially symmetrical nodal solutions.