位置:成果数据库 > 期刊 > 期刊详情页
基于联合训练的蛋白质互作用信息抽取方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子科技大学计算机科学与工程学院,成都610054
  • 相关基金:国家“863”计划资助项目(2006AA01Z411)
中文摘要:

针对生物文献库中人工标注样本数量缺乏的问题,提出一种半监督类型的基于联合训练的方法。在样本预处理的基础上,基于词特征的机器学习方法和基于模式学习的方法选择样本的不同特征子集,并被合成到联合训练方法中;在训练过程中每种方法能够利用少量初始标注样本和大量未标注样本进行学习,并用另一方法的学习结果扩充标注样本集。该方法在AIMED语料库中获得了63.9%的F1值,比较实验结果表明,该方法性能优于监督方法,且能有效利用未标注样本以适应实际抽取任务。

英文摘要:

In order to solve the problem of lack of manually labeled samples,this paper proposed a semi-supervised co-training based method.After preprocessing,the bag of words based method and the pattern learning based method selected different subset of features in samples and were incorporated into co-training.In the training stage,each method could utilize a small set of initial labeled samples and a large set of unlabeled samples to learn and the results of the other method to enlarge labeled sample set.Tested in the AIMED corpus,this method achieved F1 value of 63.9%.The comparative experimental results show that the method outperforms supervised methods and can utilize unlabeled samples efficiently to be adaptive to the real extraction tasks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049