让(M, F ) 是 Finsler 歧管,并且让 TM 0 是有概括 Riemannian 公制的 G 的 M 的裂缝正切捆,它被 F 导致。在这份报纸,我们提取许多自然生叶(TM 0,G) 和学习他们的几何性质。下次,我们使用这条途径与积极经常的旗帜弯曲获得 Finsler manifolds 的新描述。我们也调查在 Levi-Civita 连接, Cartan 连接, Vaisman 连接,垂直生叶,和 Reinhart 空格之间的关系。
Let (M, F) be a Finsler manifold, and let TMo be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TMo, G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.