位置:成果数据库 > 期刊 > 期刊详情页
Thermal analysis of intense femtosecond laser ablation of aluminum
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:TN24[电子电信—物理电子学] O536[理学—等离子体物理;理学—物理]
  • 作者机构:[1]Institute of Modern Optics, Key Laboratory of Optoelectronic Information Science ~ Technology, Ministry of Education, Nankai University, Tianjin 300071, China, [2]College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China, [3]College of Information Technical Science, Nankai University, Tianjin 300071, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 10904079 and (60338001), the Speclanzed Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090031120041), and the Natural Science Foundation of Tianjin (Grant No. 10JCYBJC01300).
中文摘要:

This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm 2 based on the two-temperature equation,and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range,for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0,100 nm and 500 nm,it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that,in the intense femtosecond laser ablation of aluminum,the material ablation is mainly induced by the thermal conduction of free electrons,instead of the direct absorption of the laser energy; in addition,the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.

英文摘要:

This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm2 based on the two-temperature equation, and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range, for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0, 100 nm and 500 nm, it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that, in the intense femtosecond laser ablation of aluminum, the material ablation is mainly induced by the thermal conduction of free electrons, instead of the direct absorption of the laser energy; in addition, the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406