针对强厚度矩形板四边简支情况,论文根据状态变量法思想,基于三维弹性理论基本方程,以3个位移分量及3个应力分量按双三角级数展开,将三维弹性力学控制方程转化为常微分方程边值问题.尽管一些各向异性弹性矩形厚板早已由状态空间法获得分析解,可是各向同性厚板的分析解至今难以获得,因为状态空间解法中特征方程有重根问题而不易于收敛.论文提出采用插值矩阵法直接对常微分方程进行求解,获得各向同性矩形厚板在四边简支边界条件下三维理论的位移和应力解,并与有限元精细结果进行比较,证明了本文解的准确性.
针对强厚度矩形板四边简支情况,论文根据状态变量法思想,基于三维弹性理论基本方程,以3个位移分量及3个应力分量按双三角级数展开,将三维弹性力学控制方程转化为常微分方程边值问题.尽管一些各向异性弹性矩形厚板早已由状态空间法获得分析解,可是各向同性厚板的分析解至今难以获得,因为状态空间解法中特征方程有重根问题而不易于收敛.论文提出采用插值矩阵法直接对常微分方程进行求解,获得各向同性矩形厚板在四边简支边界条件下三维理论的位移和应力解,并与有限元精细结果进行比较,证明了本文解的准确性.