位置:成果数据库 > 期刊 > 期刊详情页
主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究
  • ISSN号:1000-0593
  • 期刊名称:光谱学与光谱分析
  • 时间:0
  • 页码:2161-2165
  • 语言:中文
  • 分类:O657.3[理学—分析化学;理学—化学] S127[农业科学—农业基础科学]
  • 作者机构:[1]北京师范大学资源学院,北京100875, [2]中国矿业大学资源与安全工程学院,北京100083, [3]国家农业信息化工程技术研究中心,北京100089
  • 相关基金:国家高技术研究发展计划项目(2007AA120205),国际科技合作计划项目(2007DFA20640)和国家自然科学基金项目(40701119)资助
  • 相关项目:作物株型的遥感识别机理研究
中文摘要:

通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(disease index,DI)。利用主成分分析法提取冠层光谱350-1350nm范围内的前5个主成分(principal components,PCs),以及一阶微分光谱在蓝边(490-530nm),黄边(550-582nm)和红边(630-673nm)内的前3个PCs,并利用逐步回归法建立反演模型,其结果分别与植被指数经验模型进行对比,结果表明:以一阶微分PCs为变量的模型精度优于其他模型,其RMSE为7.65,相对误差为15.59%。通过对预测值与实测值对比发现,以微分指数SDr’/SDg’为变量的模型适合监测冬小麦早期病情,而以一阶微分PCs为变量的模型特别适合监测冬小麦条锈病病情较严重期。研究结果对利用高光谱遥感监测与评估小麦病害程度具有实际应用价值。

英文摘要:

The canopy reflectance of winter wheat infected by yellow rust with different severity was measured through artificial inoculation, and the disease index (DI) of the wheat corresponding to the spectra acquired in the field was obtained. Principal component analysis(PCA)was used to compute the first 5 principal components (PCs) of canopy spectra in the 350-1 350 nm range and the first 3 PCs of first-order derivative in blue edge (490-530 nm), yellow edge (550-582 nm) and red edge (630-673 nm), respectively. Step-wise regression was used to build models, the results of those models are compared with that of VI-empirical models, and the result shows that the model based on PCs of first-order derivative is particularly accurate compared to others, with the RMSE of 7. 65 and relative error of 15.59%. Comparison was made between the estimated DI and the measured DI, indicating that the model based on SDr'/SDg' is suitable to monitoring early disease and the model based on PCs of first-order derivative is suitable to monitoring the more severe disease of yellow rust of winter wheat. The conclusion has great practical and application value to acquiring and evaluating wheat disease severity using hyperspectral remote sensing, and has an important meaning for increasing yields of crops and ensuring security of food supplies.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642