位置:成果数据库 > 期刊 > 期刊详情页
基于距离的k最优粒子群优化算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国民用航空飞行学院计算机学院,四川广汉618307
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60879023).
作者: 周敏[1]
中文摘要:

传统的粒子群优化算法(Particle Swarm Optimization,PSO)只考虑了最优粒子对整个进化过程的引导作用且在一次迭代中所有粒子采用相同的惯性权值。为了体现各粒子相对于已知最优解的差异,提出了一种基于距离度量的自适应(k,l)PSO算法。(k,l)PSO算法采用轮盘赌策略在k个最优的粒子中选择一个粒子作为全局最优粒子参与粒子的速度更新,同时,根据粒子间的平均距离l确定粒子与选中的最优粒子的距离,自适应调整粒子的惯性权值。通过基准测试函数对算法进行了实验,实验验证了(k,l)PSO算法的有效性。

英文摘要:

The classical Particle Swarm Optimization(PSO) neglects the difference among particles and uses a fixed inertia weight in one generation.To cope with this issue,a novel method called(k,l) PSO is proposed in this paper.The(k,l) PSO chooses one of the top k particles as the global best particle according to the roulette strategy and tunes the inertia weight value according to the distance between the current particle and the global best particle.Several classical benchmark functions are used to evaluate the(k,l) PSO.The experiments demonstrate the efficiency and effectiveness of the proposed(k,l) PSO.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887