位置:成果数据库 > 期刊 > 期刊详情页
基于功率谱和共振峰的母羊发声信号识别
  • ISSN号:1002-6819
  • 期刊名称:《农业工程学报》
  • 时间:0
  • 分类:S826[农业科学—畜牧学;农业科学—畜牧兽医]
  • 作者机构:内蒙古农业大学机电工程学院
  • 相关基金:国家科技支撑项目(2014BAD08B05);国家自然科学基金项目(11364029);内蒙古自然科学基金项目(2012MS0720);内蒙古“草原英才”产业创新人才团队项目(内组通字[2014]27号);内蒙古农业大学科技创新团队项目(NDTD2013-6)
中文摘要:

内蒙古及周边西部地区正在发展规模化种草设施圈养,这种养殖模式要求较高的福利化饲养水平。母羊在不同的应激行为下会发出不同的声信号,可以通过识别母羊发声信号去评价其健康状况和福利化养殖水平。该研究以成年小尾寒羊为例,通过无线语音数据采集卡,平均采集80只母羊在寻羔、饥饿和惊吓3种应激行为下的发声,用Audacity软件共分割成1 200句叫声信号,并用带通滤波和小波消噪进行预处理。每种应激行为下再随机选取200句发声信号,共计600句进行AR(auto-regressive)功率谱估计和共振峰分析,提取第1、2和3共振峰频率和6个代表性的功率谱估计频域参数:功率谱密度的平均值、几何平均值、中值、切尾平均值、平均绝对偏差值和四位分极差,同时也提取叫声信号的最大值、持续时间和间隔时间时域参数,这些特征参数用于训练BP(back propagation)神经网络母羊发声信号识别模型,剩余的600句发声信号用于测试模型的识别效果。结果表明:母羊在不同应激行为下的发声信号具有明显差异的特征参数,采用共振峰参数训练的BP网络,其对母羊发声信号的正确识别率为85.3%,高于利用AR功率谱估计参数的81.0%,当2种参数进行组合训练BP网络后,其正确识别率可达93.8%,表明这种方法的识别效果更好,由于在同一种应激行为下,不同年龄和体质量的母羊发声信号具有一定的差异性,使得系统的误识别率达到6.2%。

英文摘要:

Inner Mongolia and its surrounding areas in the west are developing an intensive and large-scale sheep farming operation, in which sheep are bred with planting forage and are placed in captive facilities. However, the breeding pattern of such operation needs a high level of animal welfare management. Considering that sheep makes different vocalization in different emergent situations, ewes’ vocalization can be used as an important evidence for ewes’ health monitoring and breeding welfare evaluation. In this paper, taking Small Tail Han sheep as an example, ewes’ vocalization signals were evenly collected from 80 adult ewes under 3 stress behaviors including searching lamb, hunger, and scare via a wireless audio surveillance device. Then, these continuous vocal signals of ewes were split into 1 200 single call signals using Audacity Acoustic Edit software. The band-pass filter and wavelet denoising methods were applied to preprocess those single sound signals. Six hundred of those sound signals, which were comprised of three different stress behaviors by random selected 200 signals, were analyzed to extract ewes’ acoustic characteristic parameters using auto-regressive (AR) power spectrum estimation and formant extraction methods, respectively. Therefore, six representative frequency characteristic parameters from AR power spectrum estimation method were extracted: the power spectrum density mean, the geometric mean, the median value, the trimmed mean, the mean absolute deviation, and inter quartile deviation, and characteristics parameters from formant analysis method were the first, second and third formant frequency. Moreover, typical time-domain characteristic parameters such as signal maximum value, duration value and interval value were taken as well. Then, these characteristic parameters were used to train the back propagation (BP) neural network model of ewes’ vocalization recognition, and the rest of 600 vocal signals were used to test the effects of the recognition mode. The results demonstrate

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231