定义了拟Z-极小集,并证明了拟Z-连续Domain的每个元都有拟Z-极小集,在拟Z-连续Domain中,给出了保拟Z-极小集映射的几个等价刻画,并且在此基础上,运用Rudin性质,得到了拟Z-连续Domain上的两个相应扩张定理。
In this paper, We define Quas Z-minimal Sets, the equivalent characterization of the Quasi Z-minimal Sets is introduced, and the mapping preserving Quasi Z-minimal Sets is given, so the two corresponding extention theorems are made by Rudin lemma.