位置:成果数据库 > 期刊 > 期刊详情页
LES-SOM双流体模型数值模拟提升管内气固流动
  • ISSN号:0253-231X
  • 期刊名称:工程热物理学报
  • 时间:2013.8.8
  • 页码:1295-1297
  • 分类:TQ038.2[化学工程] TJ012.1[兵器科学与技术—兵器发射理论与技术]
  • 作者机构:School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • 相关基金:Sponsored by the National Natural Science Foundation of China(Grant No.51176042 and 21276056)
  • 相关项目:稠密异重气固两相流相间作用机理与粗糙颗粒动力学的研究
中文摘要:

Two-phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such twophase,unsteady,reactive-flow systems. The governing equations are derived in the form of coupled,non-linear axisymmetric partial differential equations. The governing equations with customized parameters are implemented into Ansys Fluent 14. 5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure-time history. The numerical results are in agreement with the experimental results. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrates the capability of using the present model implemented into Fluent,to simulate the combustion of solid propellants in a closed vessel and,eventually,the interior ballistic process in guns.

英文摘要:

Two-phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such twophase,unsteady,reactive-flow systems. The governing equations are derived in the form of coupled,non-linear axisymmetric partial differential equations. The governing equations with customized parameters are implemented into Ansys Fluent 14. 5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure-time history. The numerical results are in agreement with the experimental results. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrates the capability of using the present model implemented into Fluent,to simulate the combustion of solid propellants in a closed vessel and,eventually,the interior ballistic process in guns.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《工程热物理学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国工程热物理学会 中国科学院工程热物理研究所
  • 主编:徐建中
  • 地址:北京2706信箱
  • 邮编:100080
  • 邮箱:xb@mail.etp.ac.cn
  • 电话:010-62584937
  • 国际标准刊号:ISSN:0253-231X
  • 国内统一刊号:ISSN:11-2091/O4
  • 邮发代号:2-185
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21026