位置:成果数据库 > 期刊 > 期刊详情页
基于区域生长和蚁群聚类的图像分割
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学自动化学院,西安710072, [2]中国人民解放军93617部队,北京101400
  • 相关基金:国家自然科学基金资助项目(60675015)
中文摘要:

提出了一种基于区域生长和蚁群聚类的图像分割方法——BRGAC。该方法首先用区域生长法对图像作初始分割,然后利用蚁群算法搜索最优解的能力,在区域之间进行聚类合并,获得最终的分割结果。BRGAC算法不但克服了区域生长得不到有意义区域的不足,而且还大大提高了蚁群聚类算法的搜索时间,并利用初始分割后的空间信息和灰度信息定义了一种新的引导函数,可更准确有效引导蚁群聚类。实验结果表明,该方法可以准确地分割出目标,是一种有效的图像分割方法。

英文摘要:

This paper proposed an image segmentation method based on region growing and ant colony clustering. First, the image was segmented with region growing algorithm ; considering the good performance of BRGAC in searching the best solution of ant colony, it was used to merge different regions of homogeneity and gain the result of segmentation. BRGAC algorithm could overcome the disadvantage of region growing which can' t get meaningful region. Besides, it could reduce the computational time of ant colony clustering. What's more, BRGAC defines a new visibility based on intensity and spatial information from initialization segmentation, which guides ant clustering more effectively. Experimental results show that BRGAC can segment the image accurately and precisely, and thus is a effective method for the image segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049