设D包含R^n是一凸域并且是一致域,证明了:若γ是D中一条c-拟测地线,则对任意x1,x2∈γ,有l(γ(z1,z2))≤α1|z1-z2|,其中α1=α1(α,c)是仅与α和c有关的常数.
Suppose that D ∈ R^n is a uniform and convex domain. Let γ D be a c-quasigeodesic. Then for any z1, z2 ∈ γ, we have l ( γ (z1, z2 ) ) ≤ α1 | z1 - z2| , where α1 = al (α, c) depends only on the constants a and c.