位置:成果数据库 > 期刊 > 期刊详情页
基于超声时序神经网络目标识别的塔机安全预警
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:西安建筑科技大学,西安710055
  • 相关基金:国家自然科学基金资助项目(50975218); 陕西省教育厅专项基金资助项目(2013JK1011); 陕西省重点实验室开放基金资助项目(2014G1502043)
中文摘要:

为实现塔机失稳监测和防碰撞的安全预警功能,改善塔机被动安全模型存在的低成本、主动性、灵活性、快速性和及时性的不足,通过分析目标物特性与超声时序信号相关特征及测距值特征的关系,结合Elman、SOM网络,构建了基于超声时序神经网络目标识别的塔机安全预警系统,可以实现对扭转角和障碍物的信号采集、数据融合、主动预警功能,试验结果表明该系统可以达到预期的低成本、高速度、高精度的塔机工作要求。

英文摘要:

Aiming at tower crane safety pre-warning of instability and collision prevention,to improve the passive security model of tower crane which lacked low cost,initiative,flexibility,rapidity and simultaneity,the relationships among the target characteristics,ultrasound timing sequence relevent characteristics and distance characteristics were analyzed.Combined with Elman and SOM network,a system of target recognition of tower crane safety pre-warning was developed based on ultrasound timing sequence neural network.The functions such as sampling,data fusion,initiative prewarning of twist angles and obstacles were achieved.Experimental results verify that the system can satisfy the tower crane working requirements with low cost,high speed and high precision.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788