位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机的肌电信号小波特征分类解码
  • ISSN号:1671-4512
  • 期刊名称:《华中科技大学学报:自然科学版》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:上海交通大学机械与动力工程学院
  • 相关基金:国家重点基础研究发展计划资助项目(2011CB013300,2011CB707500);中国博士后科
中文摘要:

采用小波变换进行肌电信号预处理与多尺度分解,并采用小波系数最大值与平均能量值作为肌电信号特征,采用支持向量机进行特征分类识别的运动解码,并用此方法进行了腕部动作识别的实验.与时域特征、频域特征、AR参数特征提取方法以及神经网络识分类别方法进行对比,结果表明:基于支持向量机的小波特征提取方法可以较好地区分不同腕部动作,具有最高的分类精度,极大改善前臂假肢的操纵性能.

英文摘要:

Wavelet transform was used to preprocess electromyography (EMG)signal and extract classification features,and the maximum value of wavelet coefficient and the average energy value were used as the characteristics of EMG signal.Then using the support vector machine (SVM)for features classification of the motion decoding method.The wrist action recognition experiments were carried on with this method.Finally,it was compared with the time domain features,frequency do-main features,autoregressive model (AR)parameter feature extraction method and neural network i-dentification method.Results show that this method can well distinguish different wrist action,get the highest classification accuracy and greatly improve the handling performance of the forearm pros-thesis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华中科技大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:华中科技大学
  • 主编:丁烈云
  • 地址:武汉珞喻路1037号
  • 邮编:430074
  • 邮箱:hgxbs@mail.hust.edu.cn
  • 电话:027-87543916 87544294
  • 国际标准刊号:ISSN:1671-4512
  • 国内统一刊号:ISSN:42-1658/N
  • 邮发代号:38-9
  • 获奖情况:
  • 全国优秀科技期刊,首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21013