位置:成果数据库 > 期刊 > 期刊详情页
基于免疫克隆选择算法的图像分割
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学智能信息处理研究所,西安710071
  • 相关基金:国家自然科学基金(60133010,60372045),国家“863”计划项目(2002AA135080)和国家“973”计划项目(2001CB309403)资助课题
中文摘要:

该文基于抗体克隆选择学说理论,提出了一种求解多目标优化问题的粒子群算法——正交免疫克隆粒子群算法(Orthogonal Immune Clone Particle Swarm Optimization,OICPSO)。根据多目标的特点,提出了适合粒子群算法的克隆算子,免疫基因算子,克隆选择算子。免疫基因操作中采用了离散正交交叉算子来获得目标空间解的均匀采样,得到理想的Pareto解集,并引入拥挤距离来减少获得Pareto解集的大小,同时获得具有良好均匀性和宽广性的Pareto最优解集。实验中,与NSGA—II和MOPS0算法进行了比较,并对算法的性能指标进行了分析。结果表明,OICPSO不仅增加了种群解的多样性而且可以得到分布均匀的Pareto有效解集,对于多目标优化问题是有效地。

英文摘要:

Based on the particle swarm optimization and antibody clonal selection theory, a novel Orthogonal Immune Clone Particle Swarm Algorithm (OICPSO) is presented to solve multiobjective optimization. According to the problem characters, clone operator, immune gene operator and clone selection operator are designed in this paper. And discrete orthogonal crossover operator is used in immune gene operations to obtain uniformity of the objective space and the idea Pareto solutions. And crowding-comparison approach is adopted to obtain the uniformity of the population distribution. In experiments, the results of OICPSO are compared with NSGA-II and MOPSO, and the quality of solutions is analyzed with parameters. The results indicate that OICPSO not only can increase the solutions' diversity but also can obtain the Pareto solutions. OICPSO is effective on multiobjective optimizations.

同期刊论文项目
期刊论文 104 会议论文 52 著作 5
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739