位置:成果数据库 > 期刊 > 期刊详情页
基于改进离散二进制粒子群的SVM选择集成算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学导弹学院,陕西三原713800, [2]中国人民解放军95824部队
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60975026);陕西省自然科学基金(No.2007F19).
中文摘要:

针对基于离散二进制粒子群(BPSO)的SVM选择集成算法的分类精度不高,以及所选分类器个数过多等问题,利用改进的离散二进制粒子群算法(IBPSO)和SVM选择集成算法相结合,提出基于IBPSO的SVM选择集成算法。通过选用合适的适应度函数以及调节因子后,进行多次仿真,实验表明,对由boostr印方式生成的SVM集合,基于IBPSO的SVM以选择集成在精度和分类器个数方面均优于基于BPSO的SVM选择集成,证明了IBPSO算法的优越性。

英文摘要:

For the low classification precision and excessive classifiers of SVM selection ensemble algorithm based on improved binary particle swarm optimization, this paper combines IBPSO and SVM selection ensemble algorithm to bring forward SVM selection ensemble algorithm based on IBPSO.As suitable fitness function and regulatory factor k are selected, for the SVM sets are generated by boostrap,both the precision and the number of classifiers of SVM selection ensemble algorithm based on IBPSO are superior to those of selection ensemble algorithm based on BPSO.The experiment proves the superiority of the former algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887