We present an investigation of double-resonance optical pumping(DROP) spectra under the condition of singlephoton frequency detuning based on a cesium 6S1/2–6P3/2–8S1/2ladder-type system with a room-temperature vapor cell.Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a copropagating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.
We present an investigation of double-resonance optical pumping (DROP) spectra under the condition of single-photon frequency detuning based on a cesium 6S1/2-6P3/2-8S1/2 ladder-type system with a room-temperature vapor cell. Two DROP peaks are found, and their origins are explored. One peak has a narrow linewidth due to the atomic coherence for a counterpropagating configuration; the other peak has a broad linewidth, owing to the spontaneous decay for a coprop-agating configuration. This kind of off-resonant DROP spectrum can be used to control and offset-lock a laser frequency to a transition between excited states. We apply this technique to a multiphoton cesium magneto-optical trap, which can efficiently trap atoms on both red and blue sides of the two-photon resonance.