位置:成果数据库 > 期刊 > 期刊详情页
一种融合多级稀疏表达和度量学习的目标跟踪方法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083
  • 相关基金:国家自然科学基金重大研究计划重点项目(90820302);国家自然科学基金青年项目(61403423,61403426).
中文摘要:

基于稀疏表达的跟踪方法通常采用基于固定阈值的模板更新策略,很难适应不断变化的目标外形;其次,稀疏表达缺乏描述目标流行结构的能力,区分背景和目标的能力差.针对基于固定阈值的模板更新策略的不足,提出一种多级分层的目标模板字典.为了改善对背景和目标的区分能力,提出一种融合多级稀疏表达和度量学习的目标跟踪方法.实验结果表明了所提出的方法能有效提高跟踪的鲁棒性和精度.

英文摘要:

Traget tracking methods based on the sparse representation mostly apply a template update strategy based on the fixed threshold which is difficult to adapt to the changing shape of target. In addition, sparse representation is inadequate in capturing the manifold structures hidden in target samples. A template update strategy based on the multi-level hierarchical dictionary is proposed according to drawbacks of the template update strategy based on the fixed threshold. A tracking method combining multi-level sparse representation and metric learning is proposed in order to improve the ability to distinguish between background and targets. Experimental results show that the proposed method can improve the tracking accuracy and robustness effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961