讨论了与加权Hardy-Littlewood-Sobolev不等式有密切联系的一类积分方程:(?)证明了此类积分方程在L~(n(p-1)/(n-λ-β))(R~n)∩L~(q0)(R~n)中存在唯一的正解,并利用迭代技巧得到了正解的可积区间L~5(R~n),s∈[min{qo,n(p-1)/(n-λ-β)},∞].
In this paper,we consider the existence and integrability of positive solutionfor a class of integral equation closely related to the weighted Hardy-Littlewood-Sobolevinequality:u(x)=∫Rn(up(y))/((b+|x-y|)λ)1/(|y|β)dy,(p〉1,β〉0,0〈λ〈n,b≥0).(32)We prove that system(32) admits a unique positive solution in Ln(p-1)/(n-λ-β)(Rn)∩Lq0(Rn),furthermore,using iterated lemma,we obtain the integrable interval of positivesolution LS(Rn),s∈[min{q0,n(p - 1)/(n -λ-β)},∞].