随着无线传感器网络的不断发展,恶意节点对其安全造成了极大的威胁。传统的基于信誉阈值的模型无法准确的识别亚攻击性等恶意节点,而且会出现低识别率和高误判率等问题。为了解决这些问题,引入了基于DPAM-MD算法的新型恶意节点识别方法,在传统信誉阈值判断模型的基础上,通过结合曼哈顿度量和DPAM算法识别出亚攻击性节点。算法中提出一种新型的基于密度的聚类算法,并结合簇间和簇内距离均衡化的目标函数,将所有的节点进行分类。该算法可以提高聚类质量,有效缩短聚类时间,提高了恶意节点识别的效率。经仿真实验结果验证,改进后的算法对识别特征不明显的恶意节点效果十分显著。