位置:成果数据库 > 期刊 > 期刊详情页
EEMD-PSOGSVM耦合模型在深基坑位移预测中的应用
  • ISSN号:1671-5942
  • 期刊名称:《大地测量与地球动力学》
  • 时间:0
  • 分类:P227[天文地球—大地测量学与测量工程;天文地球—测绘科学与技术] P315[天文地球—地震学;天文地球—固体地球物理学;天文地球—地球物理学]
  • 作者机构:[1]辽宁工程技术大学测绘与地理科学学院,123000, [2]江苏万源测绘地理信息有限公司,222000
  • 相关基金:国家自然科学基金(50604009);辽宁省“百千万人才工程”项目(20100921099).
中文摘要:

针对单一预测模型的不足,提出EEMD分解与粒子群灰色支持向量机(particle swarm optimization grey support vector machine,PSOGSVM)相结合的基坑位移预测模型。以基坑时间序列的混沌性为基础,利用EEMD分解时间序列,采用相空间重构技术构造样本,应用PSOGSVM模型进行基坑预测,并与GM(1,1)、SVM、遗传小波神经网络进行对比。结果表明,该算法预测精度好,具有良好的稳定性,可有效地应用于基坑位移预测。

英文摘要:

To overcome the deficiency of the single forecasting model, an EEMD-PSOGSVM prediction model of foundation pit displacement is proposed, based on chaotic time series. The EEMD is adapted to decompose the time series, then phase space reconstruction technique is used to reconstruct the sample. The PSOGSVM model is then applied to predict. A comparative study of some deep foundation pit displacement is made by using the GM (1, 1), SVM and wavelet neural network optimized by genetic algorithm models, respectively. The results show that the predictive accuracy of this method is better and more stable, and that it can be effectively applied into the prediction of foundation pit displacement.

同期刊论文项目
期刊论文 17 会议论文 11 获奖 2 著作 2
同项目期刊论文
期刊信息
  • 《大地测量与地球动力学》
  • 北大核心期刊(2011版)
  • 主管单位:中国地震局
  • 主办单位:中国地震局地震研究所 地壳运动监测工程研究中心 中国地震局地壳应力研究所等
  • 主编:姚运生
  • 地址:湖北省武汉市武昌区洪山侧路40号
  • 邮编:430071
  • 邮箱:jgg09@public.wh.hb.cn
  • 电话:027-87864009 87667622
  • 国际标准刊号:ISSN:1671-5942
  • 国内统一刊号:ISSN:42-1655/P
  • 邮发代号:38-194
  • 获奖情况:
  • 92年、96年获中国地震局优秀期刊奖
  • 国内外数据库收录:
  • 美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9069