采用月矩阵法研究了二维光子晶体双量子阱的共振隧穿特性.研究发现:光子晶体双量子阱的共振频率可以通过调节双阱的耦合强度来控制;对称双量子阱中,共振峰发生双劈裂;不对称双量子阱,共振劈裂消失.但是,由改变左手介质和右手介质在双阱中的排列顺序产生的阱介质不对称阱的共振劈裂消失与阱宽不对称的双阱产生的共振劈裂消失不一样.进一步对一维光子晶体量子阱分析后发现,前者是由光在左右手介质中传播的能流方向相反产生干涉相消而引起;后者是由阱宽不同,阱的本征模不一样而引起.
Resonant tunneling of light through double-well structure is investigated by the R-matrix algorithm. We find that the resonant frequency can be controlled by the coupling strength between the two wells. The transmission probability shows the 2-fold peak-splitting in a symmetric double-well system, and the distortion of the resonance peak-splitting in an asymmetric double-well system. The distortion of the resonance peak - splitting by alternately placing Right-hand and Left- hend materials in the two wells is different from that resulted from the asymmetry of well-width. Moreover the distortion of the resonance peak-splitting is analyzed by means of the one-dimensional photonic QW system. The former can be understood by the destructive interference, which may lead to the complete cancellation of resonant mode, while the latter is due to the relative sifts of eigenmodes in the two wells.