位置:成果数据库 > 期刊 > 期刊详情页
基于半监督模糊核聚类的齿轮箱离群检测方法
  • ISSN号:0577-6686
  • 期刊名称:机械工程学报
  • 时间:0
  • 页码:48-52
  • 语言:中文
  • 分类:TH17[机械工程—机械制造及自动化] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华南理工大学机械与汽车工程学院,广州510640
  • 相关基金:国家自然科学基金资助项目(50605021)
  • 相关项目:基于半监督学习的机械设备离群状态智能预报方法研究
中文摘要:

研究核聚类方法在机械故障检测中的应用问题,将基于半监督学习的模糊核聚类方法用于齿轮箱离群故障的检测。机械故障早期检测的难点是故障特征微弱、样本差异小,基于半监督学习的核聚类方法利用少量已知模式的样本,结合大量未知模式的样本进行半监督学习,得到较好的识别效果。进行齿轮箱正常运行和齿轮轻微点蚀的故障试验,比较基于半监督学习的核聚类方法与无监督学习核聚类方法的检测效果。试验结果表明,基于半监督学习的核聚类方法性能更优越。

英文摘要:

Kernel clustering is investigated in mechanical fault detection, and a semi-supervised kernel-based fuzzy clustering method is presented for gear fault early detection. The difficulty in early detection of mechanical incipient fault is to extract the weak fault information in noises. The semi-supervised kernel clustering method utilizes a few of known samples, combined with a larger amount of unknown samples to perform semi-supervised learning, and obtains good efficiency. The experiments are conducted on a gearbox, where a surface defect of tooth pitting is introduced .The result of semi-supervised kernel clustering is compared with that of unsupervised kernel clustering, which demonstrates the superiority of the semi-supervised method for gear failure detection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603