利用Schauder不动点定理、Leray-Schauder抉择理论和Banach不动点定理,研究一类含积分边值条件的非线性Caputo型分数阶微分方程耦合系统边值问题,得到了该耦合系统正解存在性和唯一性的充分条件,并举例说明定理的适用性.
We studied the boundary value problem of a coupled system of a class of nonlinear Caputo type fractional differential equations with integral boundary value conditions by applying Schauder fixed point theorem,Leray-Schauder choice theory and Banach fixed point theorem.We obtained sufficient conditions for the existence and uniqueness of positive solutions of the coupled system,and illustrated the applicability of the theorem by examples.