位置:成果数据库 > 期刊 > 期刊详情页
基于梯度的结构相似度的图像质量评价方法
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]华南理工大学电子与信息学院,广东广州510640
  • 相关基金:国家自然科学基金资助项目(60402015);国家杰出青年自然科学基金资助项目(60325310)
中文摘要:

虽然基于结构信息的图像质量评价方法——结构相似度(SSIM)模型结构简单、评价性能优于峰值信噪比(PSNR)或均方误差(MSE)模型,但SSIM模型不能较好地评价严重模糊的降质图像.文中提出了一种基于梯度的结构相似度(GSSIM)图像质量评价方法,该方法将梯度作为图像的主要结构信息.实验结果表明,GSSIM模型比SSIM和PSNR(MSE)模型更符合人眼视觉系统特性,能较好地评价模糊图像的质量.

英文摘要:

Although the SSIM (Structural Similarity) model, an assessment model of image quality based on the structural information, has been proved to be better than the PSNR ( Peak Signal to Noise Ratio) or the MSE (Mean Square Error) model, there still remain some deficiencies in assessing badly blurred images. In order to solve this problem, this paper proposes a gradient-based structural similarity (GSSIM) model that takes the gradient as the main structural information of an image. Experimental results show that the proposed GSSIM model is more consistent with human visual system and can assess the quality of blurred images more precisely than the SSIM and PSNR (MSE) models.

同期刊论文项目
期刊论文 70 会议论文 9 获奖 3 著作 3
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954