位置:成果数据库 > 期刊 > 期刊详情页
集群计算环境下基于复杂网络的社会学仿真负载划分优化算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科学技术大学计算机学院,长沙410073
  • 相关基金:基金项目:国家自然科学基金项目(60773019);高等学校博士学科点专项科研基金项目(200899980004)
中文摘要:

负载划分是决定集群计算环境下基于复杂网络的并行社会学仿真性能的核心因素之一.由于背景负载等因素的影响,集群系统中往往需要根据实际可用计算资源非均匀分配仿真任务,而现有针对无标度特性拓扑结构的并行仿真负载划分算法无法适应集群环境下计算负载非均匀划分的需求.针对这一问题,提出了一个基于集散节点聚合的负载划分算法,将集群计算环境下基于复杂网络的并行社会学仿真负载划分优化问题转换为一个二部图最小代价赋值问题,最终得到仿真任务到计算节点的分配方案.理论证明该算法近似解与全局最优解比值不超过3,时间复杂度不超过O((k!+1)·kn).实验结果表明该负载划分算法相比现有算法平均提高18.8%的仿真运行性能,证明了该算法的有效性和实用性.

英文摘要:

Partitioning is regarded as one of the most important issues which seriously influence the performance of the network-based social simulation on cluster computing platform. Partitioning algorithms based on computing a k-way partitioning of undirected graph is an enabling technology for parallel simulation as it could provide the effective decomposition of the computations. Unfortunately, since the scale-free network topology, which is a common characteristic in the network-based social simulations, new challenges are imposed to the graph partitioning algorithms. While background load of hosts causes unbalancing constraints associated with the vertices, currently partitioning algorithms based on k-way partitioning of undirected graph may produce poor-quality solutions and also require more running time and memories. This paper formalizes the partitioning problem statement of the network-based social simulation, and proposes a new partitioning algorithm for the power-law graphs. According to the algorithm, the hub nodes in the graph are filtered out and assigned to the partitions firstly~ and then the k-way partitioning problem could be transformed into a minimum cost assignment problem which can obtain partitions with unbalancing constraints. This partitioning algorithm could find a solution with value at most three times the optimal value and can be executed in time O((k!+ 1) · kn). The experiments demonstrate that the algorithm is efficient.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349