在一个熔化反应堆,由于热流动(HHF ) 装载的高度,面对部件(陆军) 的血浆将承受严重热吃惊。在这份报纸,温度分发和在 HHF 负担下面的钨盔甲的热压力的地被有限元素建模并且模仿的方法调查。直角的实验和范围分析被采用比较四个代表性的因素的影响度:不变的热流动;钨盔甲的厚度;使试管和使水凉下来的传送对流热转移(CCHF ) 的系数凉下来的内部直径在热吃惊行为钨实物大模型上,然后让一个优化模特儿进行短暂的热流动实验。最后的模拟结果显示不变的热流动和 W 盔甲的厚度是为实物大模型的最大的温度的主要有影响的因素。而且,短暂热吃惊的影响都主要在不同的短暂的热流动(持续时间 0.5 ms ) 下面专注于钨(大约 500 µm ) 的浅表面层。结果为结构的设计是有用的,钨的优化基于为示范反应堆(演示) 或另外的未来反应堆面对材料的血浆。
In a fusion reactor,due to high heat flux(HHF) loads,the plasma facing components(PFCs) will suffer severe thermal shock.In this paper,the temperature distribution and thermal-stress field of tungsten armor under HHF loads were investigated by the method of finite element modeling and simulating.The orthogonal experiment and range analysis were employed to compare the influence degree of four representative factors:steady-state heat flux;thickness of tungsten armor;inner diameter of cooling tube and the coefficient of convection heat transfer(CCHF) of cooling water,on thermal shock behavior tungsten mock-ups,and then get an optimization model to conduct the transient heat flux experiment.The final simulation results indicated that the steady-state heat flux and the thickness of W armor are the main influential factors for the maximum temperature of mock-ups.Furthermore,the influence of transient thermal shock all mainly concentrates on the shallow surface layer of tungsten(about 500 μm) under different transient heat flux(duration 0.5 ms).The results are useful for the structural design and the optimization of tungsten based plasma facing materials for the demonstration reactor(DEMO) or other future reactors.