本文以光子与物质的相互作用机制为基础,论述了剂量增强效应的基本原理。用蒙特卡罗方法研究了金和硅交界时X射线入射产生的剂量梯度分布,通过MCNP5程序建立了一个三维的金硅界面结构模型,计算了不同厚度的金在金硅界面的剂量增强因子。计算结果表明:当X射线为30-300keV时,界面附近硅一侧存在较大的剂量增强效应。金的厚度影响界面附近的剂量增强效果,当金的厚度为0-10μm时,剂量增强因子随金的厚度增大;当金的厚度超过10μm后,剂量增强因子随金厚度的增加而减少。
Background: The dose enhancement factor of X-ray was found in 1970s, because of its bad damage to electronic devices. Purpose: This paper is mainly to calculate the dose-enhancement factor at Au/Si interfaces. Methods: The gradient distribution of dose with X-rays has been studied at and near the interface of Au/Si by Monte-Carlo simulation of particle transportation. The mechanism of dose enhancement is discussed based on the principles of interaction of photon with matter. A 3D Au/Si model has been established by MCNP5 program and the dose-enhancement factors of different thicknesses Au/Si interfaces were calculated by Monte Carlo method. Results: The calculated results demonstrate that there exists a stronger dose-enhancement in the Si side near the interface when the energy of X-ray is 30-300 keV. Conclusions: When the thickness of Au is 0-10 μm, dose-enhancement factor of X-ray increases along with the increase of the thickness of Au, when the thickness of Au exceeds 10 μm, dose-enhancement factor of X-ray decreases along with the increase of the thickness of Au.