本文利用热带测雨卫星(Tropical Rainfall Measuring Mission,TRMM)搭载微波成像仪(TRMMMi-crowave Imager,TMI)的探测及反演结果,结合微波辐射传输模式,就2004年17号台风暹芭(Chaba)过程,对AREM(Advanced Regional Eta-coordinate Model)模式和WRF(Weather Researchand Forecasting)模式的水凝物模拟能力进行了检验。分析表明,两个模式模拟的台风路径与实际台风路径基本一致,模拟的降水与TMI反演降水也基本相同。在此基础上,以AREM和WRF模式模拟的大气结构和水凝物结构作为微波辐射传输模式的输入参数,计算了相应大气层顶的微波亮温,通过对比该模拟亮温和TMI实测亮温的异同,尝试了对AREM和WRF模式水凝物结构的间接检验;最后,利用TMI水凝物反演产品直接检验了AREM、WRF模拟的水凝物结构。研究结果表明,AREM模拟的云水含量稍偏高,降冰含量稍偏低;WRF模拟的液相粒子分布范围较小,对冰粒子的模拟能力要好于AREM模式;两个模式对水汽的模拟都比较好。
Based on the measured and retrieved products of the TMI(TRMM Microwave Imager) on board TRMM(Tropical Rainfall Measuring Mission) and combined with the microwave radiative transfer model,the simulation capability of hydrometeor variables of typhoon Chaba(0417) in the AREM(Advanced Regional Eta-coordinate Model) and the WRF(Weather Research and Forecasting) model is verified.First,the simulated track and rain of typhoon are studied and they are consistent with the best track and retrieved rain from the TMI,respectively.Then the simulated hydrometeor variables with the AREM and the WRF model are used as the input data of the microwave radiative transfer model to calculate microwave TBs(brightness temperatures).By comparing the simulated and measured TBs,the hydrometeor structures from the AREM and the WRF model are verified indirectly.Moreover,the hydrometeor structures are verified with the retrieved data from the TMI directly.The results show that,the content of cloud liquid water is overestimated by the AREM while the content of precipitation ice is underestimated.The WRF model underestimates the area of liquid hydrometeors,but the WRF model has better performance than AREM in the forecasting of frozen hydrometeors.Both the models perform well in the simulation of water vapor.