设T是紧致度量空间X上的一个连续自映射.映射T自然诱导了由X所有非空闭子集组成的超空间K(X)上的一个连续自映射TK.证明了系统(K(X),TK)为Devaney混沌的当且仅当(K(X),TK)为一个HY系统当且仅当(X,T)为一个HY系统,其中,称一个系统为HY系统如果它是完全传递的和具有稠密的小周期集.
Let T be a continuous self-map of a compact metric space X. The transformation T induces naturally a continuous self-map TK on the hyperspace K(X) of all non-empty closed subsets of X. It is shown that the system (K(X), Tk) is Devaney chaotic if and only if (K(X), TK) is an HY-system if and only if (X,T) is an HY-system, where a system is called an HY-system if it is totally transitive and has dense small periodic sets.