位置:成果数据库 > 期刊 > 期刊详情页
基于极限学习机和boosting多核学习的目标跟踪算法
  • ISSN号:1001-506X
  • 期刊名称:《系统工程与电子技术》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:国家自然科学基金(61471154); 教育部留学回国人员科研启动基金
中文摘要:

该文针对行人识别中的特征表示问题,提出一种混合结构的分层特征表示方法,这种混合结构结合了具有表示能力的词袋结构和学习适应性的深度分层结构。首先利用基于梯度的HOG局部描述符提取局部特征,再通过一个由空间聚集受限玻尔兹曼机组成的深度分层编码方法进行编码。对于每个编码层,利用稀疏性和选择性正则化进行无监督受限玻尔兹曼机学习,再应用监督微调来增强分类任务中视觉特征表示,采用最大池化和空间金字塔方法得到高层图像特征表示。最后采用线性支持向量机进行行人识别,提取深度分层特征遮挡等与目标无关部分自然分离,有效提高了后续识别的准确性。实验结果证明了所提出方法具有较高的识别率。

英文摘要:

For feature representation of pedestrian recognition, a hybrid hierarchical feature representation method which combines representation ability of the bag of words model and depth layered with learning adaptability is presented. This method first uses HOG local descriptor gradient-based for local features extraction, and then encoding the feature by a depth of layered coding method, the layered coding method by spatial aggregating Restricted Boltzmann Machine(RBM). For each coding layer, the sparse and selective regularization are used for the unsupervised RBM learning and supervision fine-tuning is used to enhance the visual features representation in classification task. Finally, high-level image feature representation is obtained by the maximum pool and space of Pyramid method, and then the linear support vector machine is used for pedestrian recognition, feature extraction of depth architecture. It improves effectively the accuracy of subsequent recognition. Experimental results show that the proposed method has a high recognition rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341