本文研究取值在Rd上的一类双分数布朗运动迭代过程X(t)=(X1(t),…,Xd(t))局部时的存在性和联合连续性。这类过程是由阶为α的严格稳定的Lévy过程{Y(t),t>0}替代双分数布朗运动{BH,K(t),t>0}中的时间参数t所构成的双分数布朗运动迭代过程{Z(t)=BH,K(Y(t)),t>0},其中0〈α≤2,0〈H〈1,0〈K≤1,且BH,K与Y是相互独立的,并且X1,…,Xd是相互独立的,且与Z同分布。
An iterated process Z= {Z(t)=BH,K(Y(t)),t〉0}obtained by taking a bifractional Brownian motion{BH,K(t),t∈R}with Hurst index 0α≤2,0H 1,0K≤1and replacing the time parameter with a strictlyα-stable Lévy process{Y(t),t≥0}in R independent of{BH,K(t),t∈R}.This paper study the existence and joint continuity of local time of the iterated process X= {X(t),t∈R+}defined by X(t)=(X1(t),…,Xd(t))where t≥0and X1(t),…,Xd(t)are independent copies of Z.