介绍一类在商用光子晶体光纤基础上制备的悬挂芯光子微单元.该微单元能通过较简单的选择性膨胀技术实现具有大倏逝场、高双折射、多芯等功能的多种悬挂芯结构,并能与单模光纤连接形成低损耗光纤在线单元.微单元内部基于倏逝场的光与物质相互作用区域与外部环境隔离,整体易于操作,是适用于光纤实验室研究的灵活平台.分析了几种典型悬挂芯光子微单元的消逝场、损耗、双折射等特性;利用微单元的一些特性开展应用研究,包括基于折射率探测原理的微单元气体压力和液体温度传感器、基于微单元纤芯微悬臂梁的加速度传感器、微单元光栅器件等.这些研究为推进光纤实验室技术的发展和应用提供了新思路.
We report a novel type of optical fiber in-line structures named suspended- core photonic microcells. These microcells are fabricated by inflating selected air-columns in a commercial photonic crystal fiber~ and can be made to have different suspended- core structures. The microcells exhibit a range of novel optical properties such as large evanescent-field in air, high birefringence, and multiple waveguiding cores. The suspended core and the surrounding evanescent-field are isolated from external environment, and can act as robust platforms for light-matter interaction inside the microcells. The microcells can be connected to standard fiber systems with low loss. They are efficient platforms for lab-in-fiber researches. Properties of the microcells are discussed and examples of potential applications presented. The research reported here offers a new way for the development and application of lab-in-fiber technologies.