古典牛顿方法的联合并且多格子方法,即,多,格子方法被有限元素为解决伪给线性抛物线的方程 discretized 的牛顿。算法的集中每水平为一次仅仅步牛顿重复被获得。为伪的 asymptotically 计算的费用线性抛物线的问题是 O (NN_k ) 类似于多为线性抛物线的问题的格子方法。
A combination of the classical Newton Method and the multigrid method, i.e., a Newton multigrid method is given for solving quasilinear parabolic equations discretized by finite elements. The convergence of the algorithm is obtained for only one step Newton iteration per level. The asymptotically computational cost for quasilinear parabolic problems is O(NNk) similar to multigrid method for linear parabolic problems.