Poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogel specimens were prepared with 15% PVA and 1%,2%, 3%, 4% and 5% HA by repeated freezing-thawing. The tests of static and dynamic mechanical properties were carried out todiscuss the influence of different contents of HA and freezing-thawing cycles on the mechanical properties of PVA/HA compositehydrogel. The results of static mechanical tests showed that the PVA/HA composite hydrogel with 3% HA and ninefreezing-thawing cycles had excellent stress relaxation properties, higher relaxation ratio, lower stress equilibrium value andpresented better properties of creep and recovery. The results of dynamic mechanical test showed that the PVA/HA compositehydrogel with nine freezing-thawing cycles had higher storage modulus and loss modulus, so was the PVA/HA compositehydrogel with 3% HA.
Poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogel specimens were prepared with 15% PVA and 1%,2%, 3%, 4% and 5% HA by repeated freezing-thawing. The tests of static and dynamic mechanical properties were carried out todiscuss the influence of different contents of HA and freezing-thawing cycles on the mechanical properties of PVA/HA compositehydrogel. The results of static mechanical tests showed that the PVA/HA composite hydrogel with 3% HA and ninefreezing-thawing cycles had excellent stress relaxation properties, higher relaxation ratio, lower stress equilibrium value andpresented better properties of creep and recovery. The results of dynamic mechanical test showed that the PVA/HA compositehydrogel with nine freezing-thawing cycles had higher storage modulus and loss modulus, so was the PVA/HA compositehydrogel with 3% HA.