位置:成果数据库 > 期刊 > 期刊详情页
一类随机非自伴波方程的半离散有限元近似
  • ISSN号:0254-7791
  • 期刊名称:《计算数学》
  • 时间:0
  • 分类:O241.82[理学—计算数学;理学—数学] O175.27[理学—数学;理学—基础数学]
  • 作者机构:[1]Department of Mathematics, Beihang University,LMIB of the Ministry of Education, Beijing 100191, China, [2]Department of Mathematics, Northeastern University at Qinhuangdao, China
  • 相关基金:The authors would like to express their sincere gratitude to the anony- mous reviewers for their careful reading of the manuscript, as well as their comments that lead to a considerable improvement of the original manuscript. The first author was supported by the National Natural Science Foundation of China under grant 61271010 and by Beijing Natural Science Foundation under grant 4152029.
中文摘要:

这份报纸为随机的波浪方程和时空白人噪音驾驶的随机的有弹性的方程涉及有限元素方法。为简洁,我们重写随机的夸张方程的二种类型进一种统一形式。我们由 discretizing 把随机的夸张方程变换成一个调整方程白噪音然后为调整方程考虑完整分离的有限元素方法。我们由由使用确定的方程的错误估计使用“格林的方法”和有限元素近似错误导出当模特儿的错误。一些数字例子被举验证理论结果。[从作者抽象]

英文摘要:

This paper is concerned with the finite element method for the stochastic wave equation and the stochastic elastic equation driven by space-time white noise. For simplicity~ we rewrite the two types of stochastic hyperbolic equations into a unified form. We convert the stochastic hyperbolic equation into a regularized equation by discretizing the white noise and then consider the full-discrete finite element method for the regularized equation. We derive the modeling error by using “Green's method” and the finite element approximation error by using the error estimates of the deterministic equation. Some numerical examples are presented to verify the theoretical results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算数学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:周爱辉
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100190
  • 邮箱:
  • 电话:010-62555115
  • 国际标准刊号:ISSN:0254-7791
  • 国内统一刊号:ISSN:11-2125/O1
  • 邮发代号:2-521
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:4140