位置:成果数据库 > 期刊 > 期刊详情页
时变系统全局最优加权观测融合白噪声反卷积平滑器
  • ISSN号:1671-1815
  • 期刊名称:《科学技术与工程》
  • 时间:0
  • 分类:O211.64[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]黑龙江大学自动化系,哈尔滨150080
  • 相关基金:国家自然科学基金(60374026)和黑龙江大学自动控制重点实验室基金资助
中文摘要:

白噪声反卷积或输入白噪声估计问题在石油地震勘探中有重要的应用背景。对带多传感器和带不相关噪声的线性离散时变随机系统,应用Kalman滤波方法,基于加权最小二乘法,提出了全局最优加权观测融合白噪声反卷积平滑器。一个Bernoulli—Gaussian输入白噪声融合平滑器的Monte Carlo仿真例子说明了其有效性。

英文摘要:

White noise deconvolution or input white noise estimation problem has important application background in oil seismic exploration. For the linear discrete time-varying stochastic systems with multisensor and uncorrelated noises, a globally optimal weighted measurement fusion white noise deconvolution smoother is presented based on the method of weighted least squares, using Kalman fitering method. A Monte Carlo simulation example for a Bernoulli-Gaussian input white noise fusion smoother shows its effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科学技术与工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国技术经济学会
  • 主编:明廷华
  • 地址:北京市学院南路86号
  • 邮编:100081
  • 邮箱:ste@periodicals.net.cn
  • 电话:010-62118920
  • 国际标准刊号:ISSN:1671-1815
  • 国内统一刊号:ISSN:11-4688/T
  • 邮发代号:2-734
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:29478